
Service-Orientierten Architecture
and Web-Services

Introduction and Basic
Concepts

Material created by
Claus P. Priese

Claus P. Priese

Web-Services and Service-Orientierted
Architecture (WS & SOA)

Web Services are developed since 1999 by several working groups of the
World Wide Web Consortium

Most important basic specification documents are:

[W3C04g] World Wide Web Consortium: Web Services Architecture
Requirements, W3C Working Draft, 11. Februar 2004,
http://www.w3.org/TR/wss-reqs/
[W3C04h] World Wide Web Consortium: Web Services Architecture
(WSA), W3C Working Draft, 11. Februar 2004,
http://www.w3.org/TR/ws-arch
[W3C04i] World Wide Web Consortium: Web Services Glossary, W3C
Working Draft, 11. Februar 2004,
http://www.w3.org/TR/ws-gloss/

Claus P. Priese

WS & SOA – terms & concepts

What is a Web Service ?

The Web Services Glossary document [W3C04i], created by the
web services architecture working group, says:

“A Web service is a software system designed to support
interoperable machine-to-machine interaction over a network. It
has an interface described in a machine-processable format
(specifically WSDL). Other systems interact with the Web
service in a manner prescribed by its description using SOAP-
messages, typically conveyed using HTTP with an XML
serialization in conjunction with other Web-related standards.”

Claus P. Priese

WS & SOA – terms & concepts

Web Service: is an abstract decription functionality and
interfaces

Agent: is a concrete realization of a Web Service,
written in any programming language

Provider: is the person or organisation that provides a
concrete agent to implement a Web Service

Requester: is the person or organisation that wishes to
use a providers agent. For the exchange of
messages a requester agent will be used

Claus P. Priese

WS & SOA – terms & concepts

Service Description (WSD): is a machine readable
specification of web service interfaces in WSDL with
accompanying information about datatypes,
protocols, concrete endpoints and msg.X.patterns

Semantics: is the conctract between reqester und
provider about the meaning and purpose of agent-
interaction not already covered in the WSD. The way
of expressing semantics - oral, informal or strict
formal - is not specified.

Claus P. Priese

WS & SOA – terms overview

Claus P. Priese

WS & SOA – Web Services architecture

7 goals:

Interoperability
Reliability
Integration with the World Wide Web
Security
Scalability and Extensibility
Team Goals
Management and Provisioning

4 Architectural Models (Views):

Message Oriented Model
The Service Oriented Model
The Resource Oriented Model
The Policy Model

technologies:

Claus P. Priese

WS & SOA – Message Oriented Model

message := unit of data sent
from agent to agent, data-
structure described in service-
description-language
Subject: relationship between
sender and receiver
Receiver always has
transportmechnism-complient
identifier (can be an URI)
Message Exchange Patterns
MEP describe groups of
messages between agents

Claus P. Priese

WS & SOA – Service Oriented Model

Service := abstract resource
executing task for person or
organisation
Service has interface,
description and semantics
Choreographie describes
sequence and condition for
collaboration of multiple
agents in choreographie-
description-language (WS-
CDL)

Claus P. Priese

WS & SOA – Resource Oriented Model

Resource always has
identifier (URI) and
description
Resources can be
discovered by agents with
use of discovery-service
Resources are owned by
person or organization and
policies can be set on it

Claus P. Priese

WS & SOA – The Policy Model

Policies contrain the
behaviour of agents
Policies are related to and
derived from an application-
domain
Policies are set and owned
by persons or organisations
Two types of policies:
permissions and obligations
with two enforcement guards

Claus P. Priese

WS&SOA -ServiceOrientedArchitecture

Summary - 6 characteristics of SOAs from [W3C04h]:

Logical view: service is abstracted, logical view, defined in terms of
what it does
Message orientation: service formally defined in terms of
msg.exchange between provider agents and requester agents; service
is not definend by properties of agents themselves
Description orientation: services described in machine-readable
form.
Granularity: services use small number of operations with large and
complex messages.
Network orientation: services normally use over network; local use
possible too
Platform neutral: Messages in platform-neutral, standardized format
delivered through interfaces. (language: XML)

Claus P. Priese

WSDL

WSDL stands for Web Serives Description Language and is developed
from working groups of W3C in conjuntion with the Web Services
Architecture.

Most important basic specification documents are:

[W3C04j] World Wide Web Consortium: Web Services Description
Language (WSDL) Version 2.0 Part 1: Core Language, W3C Working
Draft, 3. August 2004, http://www.w3.org/TR/wsdl20
[W3C04k] World Wide Web Consortium: Web Services Description
Language (WSDL) Version 2.0 Part 2: Predefined Extensions, W3C
Working Draft, 3. August 2004, http://www.w3.org/TR/wsdl20-
extensions
[W3C04l] World Wide Web Consortium: Web Services Description
Language (WSDL) Version 2.0 Part 3: Bindings, W3C Working Draft,
3. August 2004, http://www.w3c.org/TR/wsdl20-bindings

Claus P. Priese

WSDL - Characteristics

Own WSDL-component model
Own WSDL-Namespace(s): wsdl, wsdli, wsdls, wrpc,
wsoap and whttp
Independence from any serialization format (i.e.
external representation), default is XML/XML-
Schema
Own simple Types: wsdls:string, wsdls:Token,
wsdls:NCName, wsdls:anyURI, wsdls:QName,
wsdls:boolean, wsdls:int

Claus P. Priese

WSDL – Components 1 –
definitions

A definitions-element is

a container for all other WSDL-elements (interfaces, bindings, services)
the place for targetNamespace-specifiation of contained elements
The place for type-specification in element types
The place for modularisation of WSDL-Documents by use of import/include

<definitions
targetNamespace="xs:anyURI" >

<documentation />?
[<import /> | <include />]*
<types />?
[<interface /> | <binding /> | <service />]*

</definitions>

Claus P. Priese

WSDL – Components 2 –
interfaces

A interface-element

Groups together for a service a set of message-exchanges
described in operations
Can be extended / be contained in an inheritance-hierarchy

<definitions> <interface
name="xs:NCName"
extends="list of xs:QName"?
styleDefault="list of xs:anyURI"? >

<documentation />?
[<fault /> | <operation /> | <feature /> | <property />]*

</interface> </definitions>

Claus P. Priese

WSDL – Components 3 – interface
faults

Interface faults

Appear while invocation of interface-operations, i.e.
by network-connection-loss or operation-abort
are defined at interface-level to be reusable for
different operations

<definitions> <interface>
<fault

name="xs:NCName"
element="xs:QName"? >

<documentation />?
[<feature /> | <property />]*

</fault>
</interface> </definitions>

Claus P. Priese

WSDL – Components 3 -
operation

Operations
model for an interface a set of message exchanges(inputs,
outputs) of a service
Connects to a Message-Exchange-Pattern (MEP) which
specifies exact message-sequences and cardinality
Allows the specification of Rules for the contained message
references (<input />, <output /> ..)

<definitions> <interface> <operation
name="xs:NCName"
pattern="xs:anyURI"
style="list of xs:anyURI"?
safe="xs:boolean"? >

<documentation />?
[<feature /> | <property /> | [<input /> | <output /> | <infault /> | <outfault />]+]*

</operation> </interface> </definitions>

Claus P. Priese

WSDL – RPC-Style

RPC-Style is one special operation-style (http://www.w3.org/2004/08/wsdl/style/rpc) for use with
XML-Schema as the Message-Format-Description-Language and these rules:

the content of input and output elements MUST be a complex type containing a sequence
the sequence MUST only contain elements and no other structures such as xs:choice
the sequence MUST contain only local element children. child elements MAY have
attributes: nillable, minOccurs and maxOccurs.
the LocalPart of input element's QName MUST be same as Interface operation
component's name.
the LocalPart of output element's QName is name of operation concatenated with
"Response".
Input and output elements MUST both be in the same namespace.
complex type that defines body of input or output element MUST NOT have attributes.
childelements of input and output with same qual. name, MUST use same type.
input or output sequence MUST NOT contain multiple childelements with same name.

Claus P. Priese

WSDL - Signatures

When RPC-Style is used: signature extension defines mathematical function f of given interface operations
Signature extension is an additional attribute containing a list of pairs (q, t) with types wsdls:Qname and

wsdls:Token, under these conditions:

– Only tokens #in, #out, #inout and #return are allowed
– value of the first component of each pair (q, t) MUST be unique in list
– For each child element of the input and output messages of the operation, a pair (q, t) whose first component q is equal

to the qualified name of that element MUST be present in the list
– For each pair (q, #in), there MUST be a child element of the input element with a name of q and there MUST NOT be a

child element of the output element with the same name.
– For each pair (q, #out), there MUST be a child element of the output element with a name of q and there MUST NOT be

a child element of the input element with the same name.
– For each pair (q, #inout), there MUST be a child element of the input element with a name of q and there MUST be a

child element of the output element with the same name. Furthermore, those two elements MUST have the same type.
– For each pair (q, #return), there MUST be a child element of the output element with a name of q and there MUST NOT

be a child element of the input element with the same name.

Then for the operation of an interface:

The input parameter of the mathematical function f are the message references marked with #in, #out, #inout
• The values of the mathematical function f are the message references marked with #return

Claus P. Priese

WSDL – Components 4 –
message reference

Connect message references in MEP with concrete datatypes
defined in global „types“-Element of surrounding definition

<definitions> <interface> <operation>
<input messageLabel="xs:NCName"?

element="union of xs:QName, xs:Token"? >
<documentation />?
[<feature /> | <property />]*

</input>
<output messageLabel="xs:NCName"?

element="union of xs:QName, xs:Token"? >
<documentation />?
[<feature /> | <property />]*

</output>
</operation> </interface> </definitions>

Claus P. Priese

WSDL – Components 5 –
fault reference

Connect fault message references in MEP with concrete
interface fault of surrounding interface
Two possible Fault-Message-Exchange-Patterns are: „fault-
replaces-message“ and „message-triggers-fault“

<definitions> <interface> <operation>
<infault ref="xs:QName"

messageLabel="xs:NCName"? >
<documentation />?
[<feature /> | <property />]*

</infault>*
<outfault ref="xs:QName"

messageLabel="xs:NCName"? >
<documentation />?
[<feature /> | <property />]*

</outfault>*
</operation> </interface> </definitions>

Claus P. Priese

WSDL – Components 6 –
feature

feature enables to add external conditions and rules
(specified by an URI) to be considered when
messages are exchanged
More than one feature can be present, all must be
considered
Required tells whether an requester MUST consider
the rules

<feature
uri="xs:anyURI"
required="xs:boolean"? >

<documentation />?
</feature>

Claus P. Priese

WSDL – Components 7 -
property

Properties include with an URI named runtime-
values into WSDL-Desriptions
The named runtime-value can be constraint by
<constraint />-Element
Constants can be included by <value />

<property
uri="xs:anyURI"
required="xs:boolean"? >

<documentation />?
[<value /> | <constraint />]?

</property>

Claus P. Priese

WSDL – Components 8 -
binding

A Binding specifies concrete details about the
implementation of an service-interface and its
operations about used protocols and used endpoints

If a concrete binding adds extension-elements the type-
attribute contains the location for these

<definitions> <binding
name="xs:NCName"
interface="xs:QName"?
type="xs:anyURI" >

<documentation />?
[<fault /> | <operation /> | <feature /> | <property />]*

</binding> </definitions>

Claus P. Priese

WSDL – Components 9 –
binding fault

Describes the concrete binding of a fault-
messageformat to a interface fault, which is
identified by combination of interface-namespace
and fault-name
„ref“ contains the name specified by the fault-
binding-component inside the interface specified by
the surrounding binding-component

<definitions> <binding> <fault
ref="xs:QName" >

<documentation />?
[<feature /> | <property />]*

</fault> </binding> </definitions>

Claus P. Priese

WSDL – Components 10 –
binding operation

binding of an interface operation for an endpoint to
concrete messageformats and details of used
protocol

„ref“ contains the name specified by the interface-
binding-component inside the interface specified by
the surrounding binding-component

<definitions> <binding> <operation
ref="xs:QName" >

<documentation />?
[<input /> | <output /> | <feature /> | <property />]*

</operation> </binding> </definitions>

Claus P. Priese

WSDL – Components 11 –
binding message reference

Descibes the concrete binding of message-
formats to messages in interface-operations

<definitions> <binding> <operation>
<input messageLabel="xs:NCName"? >
<documentation />?
[<feature /> | <property />]*

</input>
<output messageLabel="xs:NCName"? >
<documentation />?
[<feature /> | <property />]*

</output>
</operation> </binding> </definitions>

Claus P. Priese

WSDL – Components 12 –
service

Describes a set of endpoints implementing
the describes service
„Interface“ contains the name of the interface
this service represents

<definitions> <service
name="xs:NCName"
interface="xs:QName" >

<documentation />?
<endpoint />+
[<feature /> | <property />]*

</service> </definitions>

Claus P. Priese

WSDL – Components 13 –
endpoint

Endpoints contain the exact network adress
(attribute „address“ of the implementation for
a service within the binding specified in
attribute „binding“.

<definitions> <service> <endpoint
name="xs:NCName"
binding="xs:QName"
address="xs:anyURI"? >

<documentation />?
[<feature /> | <property />]*

</endpoint> </service>+ </definitions>

Claus P. Priese

WSDL – Components 14 –
types

Contains all message- and fault-data types.
If XML ist used as external representation
language (as by default) the types are
described as XML-Schema-Elements

<definitions>
<types>
<documentation />?
[extension elements]*

</types>
</definitions>

Claus P. Priese

WSDL – include and import

including WSDL-Descripition places the included
elements in the same namespace as given by
surrounding definition
importing places the imported elements in a
separate namespace specified in attribute
„namespace“

<definitions>
<include

location="xs:anyURI" >
<documentation />?

</include>
</definitions>

<definitions>
<import

namespace="xs:anyURI"
location="xs:anyURI"? >

<documentation />?
</import>

</definitions>

Claus P. Priese

Summary and Outlook

SOAs provides the means of choice for todays
distributed systems interconnection
Web Services and WSDL are appropriate
Architecture and infrastructure standards
What to do with Web Services?
Answer: systems for work- and business-
processoriented combination of services

– Modelling languages and process description standards
– Petri Nets for secure logic-based formal modelling

